понедельник, 7 марта 2016 г.

ИССЛЕДОВАТЬ СТРУКТУРУ ВРЕМЕНИ ФИЗИКАМ ПОМОГАЕТ КВАНТОВАЯ МЕХАНИКА И… ФИЛОСОФИЯ





Хотя в теории время можно делить на бесконечно малые интервалы, мельчайшим физически осмысленным интервалом времени считается планковское время, которое приблизительно равно 10-43 секунды. Этот конечный предел означает, что два события не могут быть разделены временем, которое будет меньше этого промежутка. Но теперь, в новой работе физики пришли к выводу, что кратчайший физически осмысленный интервал времени может быть на самом деле на несколько порядков больше времени Планка. Кроме того, физики продемонстрировали, что существование такого минимального времени изменяет базовые уравнения квантовой механики, и поскольку квантовая механика описывает все физические системы на мельчайших масштабах, это также изменяет и описание всех квантово-механических систем.Свернуть




В этом месяце в Трудах Национальной академии наук (PNAS) появилось исследование, в котором было представлено новое квантовое явление. Авторы назвали его «принципом квантовых голубей и ящиков». До этого открытия этот принцип был широко известен в традиционной науке как «принцип голубей и ящиков» (в английском языке), или как принцип Дирихле.




Когда белый свет проходит через призму, радуга на другом конце демонстрирует богатую палитру цветов. Теоретики физического факультета Варшавского университета показали, что в моделях Вселенной, использующих любую квантовую теорию гравитации, должны быть также своего рода «радуги», состоящие из разных версий пространства-времени. Этот механизм предсказывает, что вместо единого и общего пространства-времени частицы различных энергий должны ощущать слегка измененные его версии.




Черные дыры получили свое название потому, что их гравитация настолько сильна, что удерживает даже свет. А раз свет не может покинуть черную дыру, то и информация, выходит, тоже — познакомьтесь с информационным парадоксом черной дыры. Как ни странно, физики проявили теоретическую ловкость рук и придумали способ извлечь соринку информации, упавшей в черную дыру. Их расчет затрагивает одну из крупнейших загадок в физике: каким образом вся информация, попавшая в черную дыру, утекает по мере «испарения» черной дыры. Считают, что это должно происходить, но как — никто не знает.





Мы частенько говорим о квантовой физике, и многие из нас, если не все, в свое время напрягали мозги, силясь понять, что вообще происходит. Но что может быть еще более странным, чем эти странные и бесконечные интегралы вместе со сложнейшей математикой, которая развивалась десятилетиями?




Исследователи из Гарвардского университета заявили о создании способа управления светом на наноуровне, который может привести к созданию фотонных телекоммуникаций (вместо современных электронных). Как сообщается, команда исследователей разработала метаматериал из кремниевых опор, заключённых в полимер и обёрнутых золотой плёнкой, которая снижает коэффициент преломления до нуля. Говоря русским языком, это означает, что световая волна может проходить этот материал со скоростью, стремящейся к бесконечности, при этом не нарушая известные законы физики.





Вы слышали о квантовой механике, а теперь пора знакомиться с квантовыми инженерами. Спустя десятки лет пребывания в лаборатории, квантовая наука постепенно превращается в технологию, которая будет влиять на вашу повседневную жизнь. Если этим амбициозным планам суждено сбыться, к 2020 году в Великобритании может появиться самый мощный квантовый компьютер в мире, безопасная квантовая сеть на всю страну и многочисленные квантовые отрасли.




В следующий раз, когда кто-то обвинит вас в принятии иррациональных решений, просто объясните, что повинуетесь законам квантовой физики. В психологии складывается новая тенденция, которая не только использует квантовую физику для объяснения человеческого (иногда) парадоксального мышления, но и может помочь ученым разрешить определенные противоречия в результатах предыдущих психологических исследований.




Неподготовленного слушателя квантовая физика пугает с самого начала знакомства. Она странная и нелогичная, даже для физиков, которые имеют с ней дело каждый день. Но она не непонятная. Если вас интересует квантовая физика, на самом деле есть шесть ключевых понятий из нее, которые необходимо удерживать в уме. Нет, они мало связаны с квантовыми явлениями. И это не мысленные эксперименты. Просто намотайте их на ус, и квантовую физику будет намного проще понять.




Может ли странное поведение квантовых частиц указывать на существование других параллельных вселенных? Этим вопросом около пяти лет назад задался Билл Пуарье, профессор химии Техасского университета. Правда, тогда Билл не догадывался, что по мере вникания в квантовую механику сложных молекул он свалится в кроличью нору и начнет искать свидетельства других параллельных миров, которые могут проявляться в нашем собственном на квантовом уровне.





«Я просто думаю, что в струнной теории произошло слишком много хороших вещей, чтобы она была совершенно неправильной. Люди не очень хорошо ее понимают, но я просто не верю в гигантский космический замысел, который создал эту невероятную вещь, и чтобы она не имела ничего общего с реальным миром», — сказал однажды Эдвард Уиттен.




Данные, собранные телескопом Планка, подтвердили несомненную теорию квантового происхождения структуры Вселенной. Что именно произошло после рождения Вселенной? Почему сформировались звезды, планеты и гигантские галактики? На эти вопросы пытается ответить Вячеслав Муханов, космолог из Университета Людвига Максимилиана в Мюнхене, эксперт в области теоретической космологии.





Известный философ Ник Бостром считает, что будет «большая трагедия», еслиискусственный интеллект человеческого уровня никогда не будет разработан, хотя раньше этот человек предупреждал больше о катастрофических рисках для человечества, которыми грозит появление такой технологии.





Использование математики в науке в целом и физике в частности часто описывается как язык, что рождает впечатление некоего секретного кода, который должен отпугнуть всяк сюда входящего, больше неприятность, чем необходимость. Здесь мы занимаемся не только наукой, но и ее популяризацией, а вы знаете, что для успешных продаж научных книг в них должно быть как можно меньше формул (старый анекдот, не так уж далек от истины). Но математика — это намного больше занудной базы формул и странных загогулин.





Брайан Свингл был аспирантом, изучал физику веществ в Массачусетском технологическом институте, когда вдруг решил взять несколько уроков в теории струн, чтобы подкрепить свое образование — как он вспоминает, «потому что почему бы и нет?» — хотя никогда особо не интересовался этой областью. По мере углубления в детали Свингл начал подмечать неожиданные сходства подхода теории струн к физике черных дыр и квантовой гравитации с его собственной работой, в которой он использовал так называемые тензорные сети для прогнозирования свойств экзотических материалов.





Даже если слово «квантовый» не пугает вас, квантовые компьютеры все еще остаются скорее причудливыми концепциями научной фантастики, нежели реальностью. Однако последние достижения в этой области предполагают, что эти безумно быстрые компьютеры могут появиться раньше, чем мы думаем. И у нас есть много причин волноваться по поводу их прибытия.





Физики хотят найти единую теорию, которая описывает всю Вселенную, но для этого им придется решить сложнейшие проблемы в науке. Недавно вышедший фильм «Теория всего» рассказывает историю Стивена Хокинга, который стал всемирно известным физикомвопреки тому, что был прикован к инвалидной коляске с молодости. Фильм в основном про жизнь Хокинга и его отношения с женой, но все же находит немного времени, чтобы объяснить, на чем сделал карьеру Хокинг.





Представьте себе физика, сидящего в клетке с ружьем, направленным прямо на его голову. Каждые несколько секунд измеряется направление спина случайной частицы в комнате. Если спин направлен в одну сторону, то ружье стреляет и физик умирает. Если же в другую, то раздается только звук щелчка и физик выживает. Получается, шансы на выживание физика — 50 на 50, верно?





Согласно многомировой интерпретации квантовой физики, мы живем в бесконечной сети альтернативных вселенных. Это серьезное заявление, которое несет определенные и крайне серьезные научные, философские и экзистенциальные последствия. Давайте рассмотрим десять из них.





Новое применение старого инструмента позволило ученым использовать свет для изучения и управления материей с разрешением и точностью, в 1000 раз превышающими ранее возможные. Физики Мичиганского университета продемонстрировали «пондеромоторную спектроскопию», продвинутую форму этой техники, которая родилась в 15 веке, когда Исаак Ньютон впервые показал, что белый свет, проходя через призму, разбивается на радугу.





Эксперимент показал, что анализ прошлого и будущего квантовой системы «предсказывает» ее состояние более точно, чем просто анализ будущего. Сложно? Давайте разберемся. Мы настолько привыкли к детективным историям, что даже не замечаем, как автор играет со временем. Обычно убийство происходит до середины книги, но читателю видно только черное пятно, и, как правило, он узнает, что случилось, только на последней странице.





«Иди же, есть и другие миры кроме этих», — писал Стивен Кинг в «Темной башне». Одной из самых интересных тем для обсуждения является то, что наша реальность — наша Вселенная, как мы ее воспринимаем — может быть не единственной версией происходящего. Возможно, существуют другие Вселенные; возможно, и у них есть свои варианты, в которых происходят другие события и принимаются другие решения — своего рода мультивселенная.

МОГУТ ЛИ АТОМЫ БЫТЬ В ДВУХ МЕСТАХ ОДНОВРЕМЕННО?



Можно ли одновременно забить гол и не попасть по воротам? В мире самых маленьких объектов — да: в соответствии с предсказаниями квантовой механики, микроскопические объекты могут выбирать разные пути одновременно. Мир же макроскопических объектов подчиняется другим правилам: футбольный мяч, например, всегда движется в определенном направлении. Но могут быть и лазейки. Физики из Университета Бонна создали эксперимент, который должен по возможности проверить это. Первый эксперимент покажет, могут ли атомы цезия выбирать два пути одновременно.





Научные сотрудники Австралийского национального университета (ANU) и их коллеги из Университета Отаго, что в Новой Зеландии, создали прототип квантового жесткого диска. Изобретение может фундаментально изменить наше представление об уровне безопасности передачи защищенной информации. Используя атомы редкого на Земле химического элемента европия, заключенные в кристаллах из отросиликата иттрия, ученые смогли создать устройство, позволяющее до шести часов хранить информацию о квантовом состоянии, и тем самым побили предыдущий рекорд времени хранения для квантовой информации.





Мы знаем, что есть некое явление: квантовая запутанность, в ходе которой частицы связаны друг с другом на больших расстояниях. Теперь допустим, что у квантовой запутанности есть собственная масса. Таким образом, запутанность, как предполагает одна из последних научных работ, может влиять на гравитацию.





Приятный сюрприз: квантовая физика менее сложна, чем кажется. Международная команда ученых доказала, что две своеобразных особенности квантового мира, которые ранее считались разными, оказались различными проявлениями одного и того же. Результаты работы были опубликованы 19 декабря в Nature Communications.





В последнее время мы часто обращаемся к концепции мультивселенной (мультиверса, множественной вселенной), поэтому стоит освежить в памяти ее основные пункты. Представьте, что вы — это вы, но вместо того, чтобы скушать яблоко или печенье сегодня на завтрак, вы поели пиццы. Или представьте, что вы — это не вы, потому что протоны работают не так, как там, где вы, и атомы не сформировались, и вся Вселенная мертва. Или представьте что угодно, потому что когда мы говорим о множественных вселенных, мы допускаем бесконечное число возможностей. Это хорошая идея, но она часто подвергается критике со стороны физиков-скептиков.





Ни квантовые компьютеры, ни квантовая криптография не смогут получить должное развитие и стать распространенными технологиями без систем памяти, которые смогут управлять квантовой информацией легко и эффективно. Факультет физики Университета Варшавы пытается популяризовать квантовые информационные технологии путем создания атомной памяти с невероятными характеристиками и чрезвычайно простой конструкцией.





Два ученых из Университета Южной Калифорнии (USC) предложили связь между струнной теорией поля и квантовой механикой, которая может открыть дверь для использования струнной теории поля — или более широкого варианта ее, M-теории — как основы всей физики.





Новое исследование физиков из Университета Брауна заключило странность квантовой механики в ореховую скорлупу. Точнее, в гелиевый пузырь. Эксперименты под руководством Хамфри Мариса, профессора физики в Брауне, позволили предположить, что квантовое состояние электрона — волновую функцию электрона — можно разделить на кусочки, а эти кусочки, в свою очередь, поймать в ловушку из пузырьков жидкого гелия. Электроны представляют собой элементарные частицы, неделимые и неразбиваемые. Но то, что имеют в виду исследователи, кажется очень и очень странным.

Комментариев нет:

Отправить комментарий